Li–Yau Inequalities for Dunkl Heat Equations

黎怀谦 (Li, Huaiqian)

Center for Applied Mathematics Tianjin University Tianjin 300072, P. R. China

(joint work with Qian, Bin)

The 16th Workshop on Markov Processes and Related Topics (BNU and CSU, July 12-16, 2021)

2 [Li–Yau inequalities for Dunkl heat equation](#page-21-0)

3 [Sharp Li–Yau inequalities for Dunkl heat kernel:](#page-25-0) \mathbb{Z}_2^d case

- 2 [Li–Yau inequalities for Dunkl heat equation](#page-21-0)
- **3** [Sharp Li–Yau inequalities for Dunkl heat kernel:](#page-25-0) \mathbb{Z}_2^d case

 $(\mathbb{M}^n, \rho, |\cdot|, \Delta, \nabla)$

Li–Yau [Acta Math. 1986]: Assume Ric ≥ 0 . Then for every positive solution to the heat equation $\partial_t u = \Delta u$ on $(0, \infty) \times \mathbb{M}$,

$$
-\Delta \big(\log u(t,\cdot)\big)(x) \leq \frac{n}{2t}, \quad t > 0, \, x \in \mathbb{M},
$$

and equivalently,

$$
\frac{|\nabla u(t,\cdot)(x)|^2}{u(t,x)^2} - \frac{\partial_t u(t,x)}{u(t,x)} \le \frac{n}{2t}, \quad t > 0, x \in \mathbb{M},
$$

which implies the Harnack inequality

$$
u(s,x) \le u(t,y) \left(\frac{t}{s}\right)^{n/2} \exp\left(\frac{\rho(x,y)^2}{4(t-s)}\right), \quad 0 < s < t < \infty, \, x, y \in \mathbb{M}.
$$

Q: *What about Li–Yau inequalities for non-local operators?*

 $(\mathbb{M}^n, \rho, |\cdot|, \Delta, \nabla)$

Li–Yau [Acta Math. 1986]: Assume Ric > 0 . Then for every positive solution to the heat equation $\partial_t u = \Delta u$ on $(0, \infty) \times \mathbb{M}$,

$$
-\Delta \big(\log u(t,\cdot)\big)(x) \leq \frac{n}{2t}, \quad t > 0, \, x \in \mathbb{M},
$$

and equivalently,

$$
\frac{|\nabla u(t,\cdot)(x)|^2}{u(t,x)^2} - \frac{\partial_t u(t,x)}{u(t,x)} \le \frac{n}{2t}, \quad t > 0, x \in \mathbb{M},
$$

which implies the Harnack inequality

$$
u(s,x) \le u(t,y) \left(\frac{t}{s}\right)^{n/2} \exp\left(\frac{\rho(x,y)^2}{4(t-s)}\right), \quad 0 < s < t < \infty, \, x, y \in \mathbb{M}.
$$

Q: *What about Li–Yau inequalities for non-local operators?*

Basic notions

Consider the Euclidean space \mathbb{R}^d with the standard scalar product $\langle \cdot, \cdot \rangle$ and the induced norm $| \cdot | = \sqrt{\langle \cdot, \cdot \rangle}$.

• Reflection r_{α} : for $\alpha \in \mathbb{R}^d \setminus \{0\},$

$$
r_{\alpha}x = x - 2\frac{\langle \alpha, x \rangle}{|\alpha|^2} \alpha, \quad x \in \mathbb{R}^d,
$$

which is a reflection in the hyperplane α^{\perp} .

• Root system \mathfrak{R} : finite set in $\mathbb{R}^d \setminus \{0\}$ such that $\forall \alpha \in \mathfrak{R}$,

$$
r_{\alpha}(\mathfrak{R}) = \mathfrak{R}
$$
 and $\mathfrak{R} \cap \alpha \mathbb{R} = {\alpha, -\alpha}.$

Normalize $|\alpha| =$ √ $2, \alpha \in \mathfrak{R}.$

- Reflection group *G*: finite group generated by $\{r_\alpha : \alpha \in \mathbb{R}\}.$
- Multiplicity function κ : *G*-invariant map κ . : $\Re \to \mathbb{R}_+$, i.e.,

$$
\kappa_{g\alpha}=\kappa_{\alpha},\quad g\in G,\,\alpha\in\Re.
$$

Examples of root systems

Definition (C.F. Dunkl: Trans. AMS 1989)

Given a root system \Re and a multiplicity function κ . : $\Re \to \mathbb{R}_+$, for every $\xi \in \mathbb{R}^d$, the Dunkl operator along ξ is defined by

$$
D_{\xi}f(x) = \partial_{\xi}f(x) + \sum_{\alpha \in \mathfrak{R}_+} \kappa_{\alpha} \langle \alpha, \xi \rangle \frac{f(x) - f(r_{\alpha}x)}{\langle \alpha, x \rangle}, \quad f \in C^1(\mathbb{R}^d), x \in \mathbb{R}^d,
$$

where ∂_{ξ} denotes the directional derivative along ξ .

Note that $D_{\xi} \circ D_{\eta} = D_{\eta} \circ D_{\xi}, \xi, \eta \in \mathbb{R}^d$, and

$$
\frac{f(x) - f(r_{\alpha}x)}{\langle \alpha, x \rangle} = -\frac{1}{\langle \alpha, x \rangle} \int_0^1 \frac{\partial}{\partial t} f(x - t \langle \alpha, x \rangle \alpha) dt = \int_0^1 \partial_{\alpha} f(x - t \langle \alpha, x \rangle \alpha) dt.
$$

Definition (C.F. Dunkl: Trans. AMS 1989)

Given a root system \Re and a multiplicity function κ . : $\Re \to \mathbb{R}_+$, for every $\xi \in \mathbb{R}^d$, the Dunkl operator along ξ is defined by

$$
D_{\xi}f(x) = \partial_{\xi}f(x) + \sum_{\alpha \in \mathfrak{R}_+} \kappa_{\alpha} \langle \alpha, \xi \rangle \frac{f(x) - f(r_{\alpha}x)}{\langle \alpha, x \rangle}, \quad f \in C^1(\mathbb{R}^d), x \in \mathbb{R}^d,
$$

where ∂_{ξ} denotes the directional derivative along ξ .

Note that $D_{\xi} \circ D_{\eta} = D_{\eta} \circ D_{\xi}, \xi, \eta \in \mathbb{R}^d$, and

 $f(x) - f(r_{\alpha}x)$ $\frac{-f(r_\alpha x)}{\langle \alpha, x \rangle} = -\frac{1}{\langle \alpha, x \rangle}$ $\langle \alpha, x \rangle$ \int_0^1 $\frac{\partial}{\partial t} f(x - t \langle \alpha, x \rangle \alpha) dt = \int_0^1$ $\int_{0}^{1} \partial_{\alpha} f(x-t \langle \alpha, x \rangle \alpha) dt.$

Definition (C.F. Dunkl: Trans. AMS 1989)

Given a root system \Re and a multiplicity function κ . : $\Re \to \mathbb{R}_+$, for every $\xi \in \mathbb{R}^d$, the Dunkl operator along ξ is defined by

$$
D_{\xi}f(x) = \partial_{\xi}f(x) + \sum_{\alpha \in \mathfrak{R}_+} \kappa_{\alpha} \langle \alpha, \xi \rangle \frac{f(x) - f(r_{\alpha}x)}{\langle \alpha, x \rangle}, \quad f \in C^1(\mathbb{R}^d), x \in \mathbb{R}^d,
$$

where ∂_{ξ} denotes the directional derivative along ξ .

Note that $D_{\xi} \circ D_{\eta} = D_{\eta} \circ D_{\xi}, \xi, \eta \in \mathbb{R}^d$, and

$$
\frac{f(x) - f(r_{\alpha}x)}{\langle \alpha, x \rangle} = -\frac{1}{\langle \alpha, x \rangle} \int_0^1 \frac{\partial}{\partial t} f(x - t \langle \alpha, x \rangle \alpha) dt = \int_0^1 \partial_{\alpha} f(x - t \langle \alpha, x \rangle \alpha) dt.
$$

Definition (C.F. Dunkl: Trans. AMS 1989)

Given a root system \Re and a multiplicity function κ . : $\Re \to \mathbb{R}_+$, for every $\xi \in \mathbb{R}^d$, the Dunkl operator along ξ is defined by

$$
D_{\xi}f(x) = \partial_{\xi}f(x) + \sum_{\alpha \in \mathfrak{R}_+} \kappa_{\alpha} \langle \alpha, \xi \rangle \frac{f(x) - f(r_{\alpha}x)}{\langle \alpha, x \rangle}, \quad f \in C^1(\mathbb{R}^d), x \in \mathbb{R}^d,
$$

where ∂_{ξ} denotes the directional derivative along ξ .

Note that $D_{\xi} \circ D_{\eta} = D_{\eta} \circ D_{\xi}, \xi, \eta \in \mathbb{R}^d$, and

$$
\frac{f(x) - f(r_{\alpha}x)}{\langle \alpha, x \rangle} = -\frac{1}{\langle \alpha, x \rangle} \int_0^1 \frac{\partial}{\partial t} f(x - t \langle \alpha, x \rangle \alpha) dt = \int_0^1 \partial_{\alpha} f(x - t \langle \alpha, x \rangle \alpha) dt.
$$

Dunkl gradient/Laplacian

Let $\{e_j : j = 1, \dots, d\}$ be the standard orthonormal basis of \mathbb{R}^d and let D*^j* = D*e^j* . The Dunkl gradient operator and the Dunkl Laplacian are respectively defined as

$$
\nabla_{\kappa} = (\mathbf{D}_1, \cdots, \mathbf{D}_d), \quad \Delta_{\kappa} = \sum_{j=1}^d \mathbf{D}_j^2.
$$

More precisely, $\forall f \in C^2(\mathbb{R}^d),$

$$
\Delta_{\kappa}f(x) = \Delta f(x) + 2 \sum_{\alpha \in \mathfrak{R}_+} \kappa_{\alpha} \Big(\frac{\langle \alpha, \nabla f(x) \rangle}{\langle \alpha, x \rangle} - \frac{f(x) - f(r_{\alpha}x)}{\langle \alpha, x \rangle^2} \Big), \quad x \in \mathbb{R}^d.
$$

In particular, when $\kappa = 0$, $\nabla_0 = \nabla$ and $\Delta_0 = \Delta$.

Dunkl gradient/Laplacian

Let $\{e_j : j = 1, \dots, d\}$ be the standard orthonormal basis of \mathbb{R}^d and let D*^j* = D*e^j* . The Dunkl gradient operator and the Dunkl Laplacian are respectively defined as

$$
\nabla_{\kappa} = (\mathbf{D}_1, \cdots, \mathbf{D}_d), \quad \Delta_{\kappa} = \sum_{j=1}^d \mathbf{D}_j^2.
$$

More precisely, $\forall f \in C^2(\mathbb{R}^d)$,

$$
\Delta_{\kappa} f(x) = \Delta f(x) + 2 \sum_{\alpha \in \mathfrak{R}_+} \kappa_{\alpha} \Big(\frac{\langle \alpha, \nabla f(x) \rangle}{\langle \alpha, x \rangle} - \frac{f(x) - f(r_{\alpha} x)}{\langle \alpha, x \rangle^2} \Big), \quad x \in \mathbb{R}^d.
$$

In particular, when $\kappa = 0$, $\nabla_0 = \nabla$ and $\Delta_0 = \Delta$.

Dunkl gradient/Laplacian

Let $\{e_j : j = 1, \dots, d\}$ be the standard orthonormal basis of \mathbb{R}^d and let D*^j* = D*e^j* . The Dunkl gradient operator and the Dunkl Laplacian are respectively defined as

$$
\nabla_{\kappa} = (\mathbf{D}_1, \cdots, \mathbf{D}_d), \quad \Delta_{\kappa} = \sum_{j=1}^d \mathbf{D}_j^2.
$$

More precisely, $\forall f \in C^2(\mathbb{R}^d)$,

$$
\Delta_{\kappa} f(x) = \Delta f(x) + 2 \sum_{\alpha \in \mathfrak{R}_+} \kappa_{\alpha} \Big(\frac{\langle \alpha, \nabla f(x) \rangle}{\langle \alpha, x \rangle} - \frac{f(x) - f(r_{\alpha} x)}{\langle \alpha, x \rangle^2} \Big), \quad x \in \mathbb{R}^d.
$$

In particular, when $\kappa = 0$, $\nabla_0 = \nabla$ and $\Delta_0 = \Delta$.

Example (rank-one case)

Let $d = 1$. Then $\Re = \{-\sqrt{2},$ √ 2}, $G = \{e, r\}$ with $e(x) = x$ and *r*(*x*) = −*x* for every *x* ∈ R. Given $\lambda \in \mathbb{R}_+$, the Dunkl operator is

$$
Df(x) = f'(x) + \lambda \frac{f(x) - f(-x)}{x}, \quad x \in \mathbb{R}, f \in C^1(\mathbb{R}),
$$

and the Dunkl Laplacian is

$$
D^{2} f(x) = f''(x) + \frac{\lambda}{x^{2}} [f(-x) - f(x) + 2xf'(x)], \quad x \in \mathbb{R}, f \in C^{2}(\mathbb{R}).
$$

Example (radial Dunkl process)

Let $W = \{x \in \mathbb{R}^d : \langle \alpha, x \rangle > 0, \, \alpha \in \mathfrak{R}_+\}$ and let \overline{W} be its closure. The *radial Dunkl process* is defined as the \overline{W} -valued Markov process with infinitesimal generator

$$
\Delta_{\kappa}^{W} f(x) = \frac{1}{2} \Delta f(x) + \sum_{\alpha \in \mathfrak{R}_{+}} \kappa_{\alpha} \frac{\langle \alpha, \nabla f(x) \rangle}{\langle \alpha, x \rangle},
$$

where $f \in C^2(\overline{W})$ such that $\langle \alpha, \nabla f(x) \rangle = 0$ whenever $\langle \alpha, x \rangle = 0$. It is known that the corresponding SDE, i.e.,

$$
dY_t = dB_t + \sum_{\alpha \in \mathfrak{R}_+} \kappa_\alpha \frac{dt}{\langle \alpha, Y_t \rangle}, \quad Y_0 = y \in \overline{W},
$$

has a unique strong solution for all *t* ≥ 0 (see e.g. O. Chybiryakov [SPA 2006], B. Schapira [PTRF 2007]).

Example (radial Dunkl process)

Let $W = \{x \in \mathbb{R}^d : \langle \alpha, x \rangle > 0, \, \alpha \in \mathfrak{R}_+\}$ and let \overline{W} be its closure. The *radial Dunkl process* is defined as the \overline{W} -valued Markov process with infinitesimal generator

$$
\Delta_{\kappa}^{W} f(x) = \frac{1}{2} \Delta f(x) + \sum_{\alpha \in \mathfrak{R}_{+}} \kappa_{\alpha} \frac{\langle \alpha, \nabla f(x) \rangle}{\langle \alpha, x \rangle},
$$

where $f \in C^2(\overline{W})$ such that $\langle \alpha, \nabla f(x) \rangle = 0$ whenever $\langle \alpha, x \rangle = 0$. It is known that the corresponding SDE, i.e.,

$$
dY_t = dB_t + \sum_{\alpha \in \mathfrak{R}_+} \kappa_\alpha \frac{dt}{\langle \alpha, Y_t \rangle}, \quad Y_0 = y \in \overline{W},
$$

has a unique strong solution for all $t > 0$ (see e.g. O. Chybiryakov [SPA 2006], B. Schapira [PTRF 2007]).

A remark on Dunkl process

$$
(\Delta_{\kappa}, \mathcal{D}(\Delta_{\kappa})) \iff \text{Dunkl process } (X_t)_{t \geq 0}
$$

 $∀I ⊂ ℜ₊$, let

$$
U_I = \{ \alpha \in \mathfrak{R}_+ : \langle \alpha, x \rangle = 0, x \in \cap_{\alpha \in I} \alpha^\perp \}.
$$

 $(X_t)_{t>0}$ is a càdlàg Markov process of jump type with jumping kernel

$$
K(x, dy) = \begin{cases} \sum_{\alpha \in \mathfrak{R}_+} \frac{2\kappa_\alpha}{\langle \alpha, x \rangle^2} \delta_{r_\alpha x}(\mathrm{d}y), & x \in \mathbb{R}^d \setminus (\cup_{\alpha \in \mathfrak{R}_+} \alpha^\perp), \\ \sum_{\alpha \in \mathfrak{R}_+ \setminus U_I} \frac{2\kappa_\alpha}{\langle \alpha, x \rangle^2} \delta_{r_\alpha x}(\mathrm{d}y), & x \in \cap_{\alpha \in I} \alpha^\perp, \\ 0, & x = 0, \end{cases}
$$

where *I* is any subset of \mathfrak{R}_+ , δ denotes the Dirac measure.

M. Rösler and M. Voit [Adv. App. Math. 1998], L. Gallardo and M. Yor [PTRF 2005] & [AOP 2006], B. Schapira [PTRF 2007], etc.

Let

$$
\omega_{\kappa}(x) := \prod_{\alpha \in \mathfrak{R}_+} |\langle \alpha, x \rangle|^{\kappa_{\alpha}}, \quad x \in \mathbb{R}^d,
$$

which is a homogeneous function of degree

$$
\lambda_\kappa:=\sum_{\alpha\in\mathfrak{R}_+}\kappa_\alpha.
$$

Let

$$
\mu_{\kappa}(\mathrm{d}x):=\omega_{\kappa}(x)\mathrm{d}x,
$$

where d*x* denotes the Lebesgue measure on R *d* .

Let $(P_t)_{t>0}$ be the Dunkl semigroup with $P_t = e^{t\Delta_{\kappa}}$ for every $t > 0$. Then P_t admits the Dunkl heat kernel $p_t(x, y)$ w.r.t. μ_k , which is a C^{∞} function of all variables $x, y \in \mathbb{R}^d$ and $t > 0$, and satisfies that

$$
\partial_t p_t(x,y) = \Delta_\kappa p_t(\cdot,y)(x), \ p_t(x,y) = p_t(y,x) > 0, \ \int_{\mathbb{R}^d} p_t(x,y) \, \mathrm{d}\mu_\kappa(y) = 1;
$$

moreover,

$$
p_t(x,y) \leq \frac{1}{c_{\kappa}(2t)^{d/2+\lambda_{\kappa}}} \exp\Big(-\frac{\delta(x,y)^2}{4t}\Big), \quad x,y \in \mathbb{R}^d, t>0,
$$

where $c_{\kappa} := \int_{\mathbb{R}^d} e^{-|x|^2/2} \mu_{\kappa}(\text{d}x)$ and $\delta(x, y) := \min_{g \in G} |gx - y|$.

- 2 [Li–Yau inequalities for Dunkl heat equation](#page-21-0)
- **3** [Sharp Li–Yau inequalities for Dunkl heat kernel:](#page-25-0) \mathbb{Z}_2^d case

2 [Li–Yau inequalities for Dunkl heat equation](#page-21-0)

3 [Sharp Li–Yau inequalities for Dunkl heat kernel:](#page-25-0) \mathbb{Z}_2^d case

Li–Yau inequalities for Dunkl heat equation

Theorem (L.–Qian 2021)

Let $T \in (0, \infty]$ and $\beta : (0, T) \times \mathbb{R}^d \to \mathbb{R}$ be a function. Suppose that $u:[0,T)\times \mathbb{R}\rightarrow (0,\infty)$ *is any* C^2 *solution to the Dunkl heat equation*

 $\partial_t u(t, x) = \Delta_{\kappa} (u(t, \cdot))(x), \quad (t, x) \in (0, T) \times \mathbb{R}^d.$

Then

$$
- \Delta_{\kappa} (\log p_t(\cdot, y))(x) \leq \beta(t, x), \quad (t, x, y) \in (0, T) \times \mathbb{R}^d \times \mathbb{R}^d, (1)
$$

is equivalent to

$$
- \Delta_{\kappa} \big(\log u(t, \cdot) \big)(x) \leq \beta(t, x), \quad (t, x) \in (0, T) \times \mathbb{R}^d; \tag{2}
$$

moreover, either [\(1\)](#page-22-0) *or* [\(2\)](#page-22-1) *implies*

$$
\frac{|\nabla u(t,\cdot)(x)|^2}{u(t,x)^2}-\frac{\partial_t u(t,x)}{u(t,x)}\leq \beta(t,x), \quad (t,x)\in (0,T)\times \mathbb{R}^d.
$$

The idea of proof is motivated by C. Yu and F. Zhao [JGA, 2020], where sharp Li–Yau inequalities for the Laplace–Beltrami operator on hyperbolic spaces were obtained.

Recently, similar idea was employed by F. Weber and R. Zacher in [arXiv:2012.12974] to prove Li–Yau inequalities for the fractional Laplacian $(-\Delta)^s$ with $s \in (0, 1)$.

- 2 [Li–Yau inequalities for Dunkl heat equation](#page-21-0)
- **3** [Sharp Li–Yau inequalities for Dunkl heat kernel:](#page-25-0) \mathbb{Z}_2^d case

2 [Li–Yau inequalities for Dunkl heat equation](#page-21-0)

3 [Sharp Li–Yau inequalities for Dunkl heat kernel:](#page-25-0) \mathbb{Z}_2^d case

Theorem (L.–Qian 2021)

Suppose that G is isomorphic to $\mathbb{Z}_2^d = \{0,1\}^d$ *. Then*

$$
-\Delta_{\kappa}\big(\log p_t(\cdot,y)\big)(x)\leq \frac{d+2\lambda_{\kappa}}{2t},\quad x,y\in\mathbb{R}^d,\,t>0.
$$

If $\kappa = 0$, then $\Delta_{\kappa} = \Delta$, $\lambda_{\kappa} = 0$, and $(p_t)_{t>0}$ is the heat kernel associated to Δ on \mathbb{R}^d , i.e.,

$$
p_t(x, y) = \frac{1}{(4\pi t)^{d/2}} \exp\left(-\frac{|x - y|^2}{4t}\right), \quad x, y \in \mathbb{R}^d, t > 0;
$$

hence

$$
-\Delta \big(\log p_t(\cdot,y)\big)(x) = \frac{d}{2t}, \quad x, y \in \mathbb{R}^d, t > 0.
$$

Dunkl heat kernel: \mathbb{Z}_2^d $_2^d$ case

Let $\Gamma(\cdot)$ be the Gamma function. For every $t > 0$, $u, v \in \mathbb{R}$ and each $i = 1, \cdots, d$, let

$$
p_t^i(u,v)=\frac{1}{c_{\kappa_i}(2t)^{\kappa_i+1/2}}\exp\Big(-\frac{u^2+v^2}{4t}\Big)E_{\kappa_i}\Big(\frac{u}{\sqrt{2t}},\frac{v}{\sqrt{2t}}\Big),
$$

where $c_{\kappa_i} := \Gamma(\kappa_i + 1/2)$ and

$$
E_{\kappa_i}(u,v) := \frac{\Gamma(\kappa_i + 1/2)}{\Gamma(1/2)\Gamma(\kappa_i)} \int_{-1}^1 (1-s)^{\kappa_i - 1} (1+s)^{\kappa_i} e^{suv} ds.
$$

Then, for every $t > 0$ and every $x, y \in \mathbb{R}^d$ with $x = (x_1, \dots, x_d)$ and $y = (y_1, \cdots, y_d),$

$$
p_t(x, y) = \prod_{i=1}^d p_t^i(x_i, y_i).
$$

Sketched proofs (I)

Let $t > 0$ and $x, y \in \mathbb{R}^d$ with $x = (x_1, \dots, x_d), y = (y_1, \dots, y_d)$. Then

$$
\Delta_{\kappa} \left(\log p_t(\cdot, y) \right)(x)
$$
\n
$$
= \sum_{j=1}^d \left(\frac{\kappa_j}{x_j^2} \left[2x_j \partial_{x_j} \log p_t^j(x_j, y_j) - \log p_t^j(x_j, y_j) + \log p_t^j(-x_j, y_j) \right] + \partial_{x_j x_j}^2 \log p_t^j(x_j, y_j) \right).
$$

Hence, it suffices to estimate the terms in the parentheses, i.e.,

x 2 *j* $\left[2x_j\partial_{x_j}\log p_t^j(x_j,y_j)-\log p_t^j(x_j,y_j)+\log p_t^j(-x_j,y_j)\right]+\partial_{x_jx_j}^2\log p_t^j(x_j,y_j),$

and it reduces to the rank-one case.

Sketched proofs (I)

Let $t > 0$ and $x, y \in \mathbb{R}^d$ with $x = (x_1, \dots, x_d), y = (y_1, \dots, y_d)$. Then

$$
\Delta_{\kappa} \left(\log p_t(\cdot, y) \right)(x)
$$
\n
$$
= \sum_{j=1}^d \left(\frac{\kappa_j}{x_j^2} \left[2x_j \partial_{x_j} \log p_t^j(x_j, y_j) - \log p_t^j(x_j, y_j) + \log p_t^j(-x_j, y_j) \right] + \partial_{x_j x_j}^2 \log p_t^j(x_j, y_j) \right).
$$

Hence, it suffices to estimate the terms in the parentheses, i.e.,

$$
\frac{\kappa_j}{x_j^2} \left[2x_j\partial_{x_j}\log p_t^j(x_j,y_j)-\log p_t^j(x_j,y_j)+\log p_t^j(-x_j,y_j)\right]+\partial_{x_jx_j}^2\log p_t^j(x_j,y_j),
$$

and it reduces to the rank-one case.

Sketched proofs (II)

Ignoring the subscript *j*, for every $t > 0$ and $x, y \in \mathbb{R}$, we let

$$
I := \partial_{xx}^2 \log p_t(x, y) + \frac{\kappa}{x^2} \big[2x \partial_x \log p_t(x, y) - \log p_t(x, y) + \log p_t(-x, y) \big],
$$

where

$$
p_t(x, y) = \frac{1}{c_{\kappa}(2t)^{\kappa + 1/2}} \exp\Big(-\frac{x^2 + y^2}{4t}\Big) E_{\kappa}\Big(\frac{x}{\sqrt{2t}}, \frac{y}{\sqrt{2t}}\Big),
$$

$$
E_{\kappa}\Big(\frac{x}{\sqrt{2t}}, \frac{y}{\sqrt{2t}}\Big) = C_{\kappa} \int_{-1}^{1} (1 - s)^{\kappa - 1} (1 + s)^{\kappa} e^{\frac{sy}{2t}} ds.
$$

Then we only need to estimate

$$
I_1 := \frac{\partial_{xx}^2 \log p_t(x, y)}{x^2}.
$$

\n
$$
I_2 := \frac{\kappa}{x^2} \left[2x \partial_x \log p_t(x, y) - \log p_t(x, y) + \log p_t(-x, y) \right].
$$

Sketched proofs (II)

Ignoring the subscript *j*, for every $t > 0$ and $x, y \in \mathbb{R}$, we let

$$
I := \partial_{xx}^2 \log p_t(x, y) + \frac{\kappa}{x^2} \big[2x \partial_x \log p_t(x, y) - \log p_t(x, y) + \log p_t(-x, y) \big],
$$

where

$$
p_t(x, y) = \frac{1}{c_{\kappa}(2t)^{\kappa + 1/2}} \exp\Big(-\frac{x^2 + y^2}{4t}\Big) E_{\kappa}\Big(\frac{x}{\sqrt{2t}}, \frac{y}{\sqrt{2t}}\Big),
$$

$$
E_{\kappa}\Big(\frac{x}{\sqrt{2t}}, \frac{y}{\sqrt{2t}}\Big) = C_{\kappa} \int_{-1}^{1} (1 - s)^{\kappa - 1} (1 + s)^{\kappa} e^{\frac{sy}{2t}} ds.
$$

Then we only need to estimate

$$
I_1 := \frac{\partial_{xx}^2 \log p_t(x, y)}{\partial x^2}.
$$

\n
$$
I_2 := \frac{\kappa}{x^2} \left[2x \partial_x \log p_t(x, y) - \log p_t(x, y) + \log p_t(-x, y) \right].
$$

Sketched proofs (III)

Let
$$
g(s) = (1 - s)^{\kappa - 1} (1 + s)^{\kappa}
$$
 and $a = xy/(2t)$.

By the Cauchy–Schwarz inequality,

$$
I_1 = -\frac{1}{2t} + \frac{y^2}{4t^2} \left(\frac{\int_{-1}^1 s^2 g(s) e^{as} ds}{\int_{-1}^1 g(s) e^{as} ds} - \frac{\left(\int_{-1}^1 s g(s) e^{as} ds\right)^2}{\left(\int_{-1}^1 g(s) e^{as} ds\right)^2} \right)
$$

\n
$$
\geq -\frac{1}{2t}.
$$

$$
I_2 = \frac{\kappa}{x^2} \left[-\frac{x^2}{t} + 2a \frac{\int_{-1}^1 s g(s) e^{as} ds}{\int_{-1}^1 g(s) e^{as} ds} + \log \frac{\int_{-1}^1 g(s) e^{-as} ds}{\int_{-1}^1 g(s) e^{as} ds} \right]
$$

\n
$$
\geq -\frac{\kappa}{t}.
$$

Thus, $I = I_1 + I_2 \ge -(1 + 2\kappa)/(2t)$.

Sketched proofs (III)

Let
$$
g(s) = (1 - s)^{\kappa - 1} (1 + s)^{\kappa}
$$
 and $a = xy/(2t)$.

By the Cauchy–Schwarz inequality,

$$
I_1 = -\frac{1}{2t} + \frac{y^2}{4t^2} \left(\frac{\int_{-1}^1 s^2 g(s) e^{as} ds}{\int_{-1}^1 g(s) e^{as} ds} - \frac{\left(\int_{-1}^1 s g(s) e^{as} ds\right)^2}{\left(\int_{-1}^1 g(s) e^{as} ds\right)^2} \right)
$$

\n
$$
\geq -\frac{1}{2t}.
$$

$$
I_2 = \frac{\kappa}{x^2} \left[-\frac{x^2}{t} + 2a \frac{\int_{-1}^1 s g(s) e^{as} ds}{\int_{-1}^1 g(s) e^{as} ds} + \log \frac{\int_{-1}^1 g(s) e^{-as} ds}{\int_{-1}^1 g(s) e^{as} ds} \right]
$$

$$
\geq -\frac{\kappa}{t}.
$$

Thus, $I = I_1 + I_2 \ge -(1 + 2\kappa)/(2t)$.

Sketched proofs (III)

Let
$$
g(s) = (1 - s)^{\kappa - 1} (1 + s)^{\kappa}
$$
 and $a = xy/(2t)$.

By the Cauchy–Schwarz inequality,

$$
I_1 = -\frac{1}{2t} + \frac{y^2}{4t^2} \left(\frac{\int_{-1}^1 s^2 g(s) e^{as} ds}{\int_{-1}^1 g(s) e^{as} ds} - \frac{\left(\int_{-1}^1 s g(s) e^{as} ds\right)^2}{\left(\int_{-1}^1 g(s) e^{as} ds\right)^2} \right)
$$

\n
$$
\geq -\frac{1}{2t}.
$$

$$
I_2 = \frac{\kappa}{x^2} \left[-\frac{x^2}{t} + 2a \frac{\int_{-1}^1 s g(s) e^{as} ds}{\int_{-1}^1 g(s) e^{as} ds} + \log \frac{\int_{-1}^1 g(s) e^{-as} ds}{\int_{-1}^1 g(s) e^{as} ds} \right]
$$

$$
\geq -\frac{\kappa}{t}.
$$

Thus, $I = I_1 + I_2 \ge -(1 + 2\kappa)/(2t)$.

An immediate consequence of the Li–Yau inequality is the Harnack inequality.

Corollary (L.–Qian 2021)

Let $T \in (0, \infty]$. Suppose that G is isomorphic to \mathbb{Z}_2^d and $u : [0, T) \times \mathbb{R}$ \rightarrow $(0, \infty)$ *is a* C^2 *solution to the Dunkl heat equation, i.e.,*

$$
\partial_t u(t,x) = \Delta_{\kappa}\big(u(t,\cdot)\big)(x), \quad (t,x) \in (0,T) \times \mathbb{R}^d.
$$

Then, for every $0 < s < t < T$ and every $x, y \in \mathbb{R}^d$,

$$
u(s,x) \leq u(t,y) \left(\frac{t}{s}\right)^{\lambda_{\kappa}+d/2} \exp\left(\frac{|x-y|^2}{4(t-s)}\right).
$$

- 2 [Li–Yau inequalities for Dunkl heat equation](#page-21-0)
- **3** [Sharp Li–Yau inequalities for Dunkl heat kernel:](#page-25-0) \mathbb{Z}_2^d case

2 [Li–Yau inequalities for Dunkl heat equation](#page-21-0)

3 [Sharp Li–Yau inequalities for Dunkl heat kernel:](#page-25-0) \mathbb{Z}_2^d case

Li–Yau inequalities of "gradient" type

Let
$$
f, g \in C^2(\mathbb{R}^d)
$$
 and $x \in \mathbb{R}^d$. Then
\n
$$
\Gamma(f, g)(x) := \frac{1}{2} \left[\Delta_{\kappa}(fg) - f \Delta_k g - g \Delta_{\kappa} f \right](x)
$$
\n
$$
= \langle \nabla f(x), \nabla g(x) \rangle + \sum_{\alpha \in \mathfrak{R}_+} \kappa_{\alpha} \frac{\left(f(x) - f(r_{\alpha}x) \right) \left(g(x) - g(r_{\alpha}x) \right)}{\langle \alpha, x \rangle^2}.
$$

Set $\Gamma(f) = \Gamma(f, f)$ for convenience.

Q: Does any of the following hold, i.e.,

$$
\frac{\Gamma(p_t(\cdot,y))(x)}{p_t(x,y)^2} - \frac{\partial_t p_t(x,y)}{p_t(x,y)} \leq \frac{d+2\lambda_{\kappa}}{2t}
$$

and

$$
\frac{|\nabla_{\kappa}p_t(\cdot,y)(x)|^2}{p_t(x,y)^2}-\frac{\partial_t p_t(x,y)}{p_t(x,y)}\leq \frac{d+2\lambda_{\kappa}}{2t}?
$$

" Thank you everyone! "