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Li–Yau inequalities

(Mn, ρ, | · |,∆,∇)

Li–Yau [Acta Math. 1986]: Assume Ric ≥ 0. Then for every positive
solution to the heat equation ∂tu = ∆u on (0,∞)×M,

−∆
(

log u(t, ·)
)
(x) ≤ n

2t
, t > 0, x ∈M,

and equivalently,

|∇u(t, ·)(x)|2

u(t, x)2 − ∂tu(t, x)

u(t, x)
≤ n

2t
, t > 0, x ∈M,

which implies the Harnack inequality

u(s, x) ≤ u(t, y)
( t

s

)n/2
exp

( ρ(x, y)2

4(t − s)

)
, 0 < s < t <∞, x, y ∈M.

Q: What about Li–Yau inequalities for non-local operators?
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Basic notions

Consider the Euclidean space Rd with the standard scalar product
〈·, ·〉 and the induced norm | · | =

√
〈·, ·〉.

• Reflection rα: for α ∈ Rd \ {0},

rαx = x− 2
〈α, x〉
|α|2

α, x ∈ Rd,

which is a reflection in the hyperplane α⊥.
• Root system R: finite set in Rd \ {0} such that ∀α ∈ R,

rα(R) = R and R ∩ αR = {α,−α}.

Normalize |α| =
√

2, α ∈ R.
• Reflection group G: finite group generated by {rα : α ∈ R}.
• Multiplicity function κ: G-invariant map κ· : R→ R+, i.e.,

κgα = κα, g ∈ G, α ∈ R.
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Examples of root systems
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Dunkl operator

Let R+ be the positive subsystem such that R = R+ ] (−R+).

Definition (C.F. Dunkl: Trans. AMS 1989)
Given a root system R and a multiplicity function κ· : R→ R+, for
every ξ ∈ Rd, the Dunkl operator along ξ is defined by

Dξf (x) = ∂ξf (x) +
∑
α∈R+

κα〈α, ξ〉
f (x)− f (rαx)

〈α, x〉
, f ∈ C1(Rd), x ∈ Rd,

where ∂ξ denotes the directional derivative along ξ.

Note that Dξ ◦ Dη = Dη ◦ Dξ, ξ, η ∈ Rd, and

f (x)− f (rαx)

〈α, x〉
= − 1
〈α, x〉

∫ 1

0

∂

∂t
f
(
x− t〈α, x〉α

)
dt =

∫ 1

0
∂αf
(
x− t〈α, x〉α

)
dt.

However, no classic Leibniz and chain rules in general!
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Dunkl gradient/Laplacian

Let {ej : j = 1, · · · , d} be the standard orthonormal basis of Rd and
let Dj = Dej . The Dunkl gradient operator and the Dunkl Laplacian
are respectively defined as

∇κ = (D1, · · · ,Dd), ∆κ =

d∑
j=1

D2
j .

More precisely, ∀ f ∈ C2(Rd),

∆κf (x) = ∆f (x) + 2
∑
α∈R+

κα

( 〈α,∇f (x)〉
〈α, x〉

− f (x)− f (rαx)

〈α, x〉2
)
, x ∈ Rd.

In particular, when κ = 0, ∇0 = ∇ and ∆0 = ∆.

8 / 29



Dunkl gradient/Laplacian

Let {ej : j = 1, · · · , d} be the standard orthonormal basis of Rd and
let Dj = Dej . The Dunkl gradient operator and the Dunkl Laplacian
are respectively defined as

∇κ = (D1, · · · ,Dd), ∆κ =

d∑
j=1

D2
j .

More precisely, ∀ f ∈ C2(Rd),

∆κf (x) = ∆f (x) + 2
∑
α∈R+

κα

( 〈α,∇f (x)〉
〈α, x〉

− f (x)− f (rαx)

〈α, x〉2
)
, x ∈ Rd.

In particular, when κ = 0, ∇0 = ∇ and ∆0 = ∆.

8 / 29



Dunkl gradient/Laplacian

Let {ej : j = 1, · · · , d} be the standard orthonormal basis of Rd and
let Dj = Dej . The Dunkl gradient operator and the Dunkl Laplacian
are respectively defined as

∇κ = (D1, · · · ,Dd), ∆κ =

d∑
j=1

D2
j .

More precisely, ∀ f ∈ C2(Rd),

∆κf (x) = ∆f (x) + 2
∑
α∈R+

κα

( 〈α,∇f (x)〉
〈α, x〉

− f (x)− f (rαx)

〈α, x〉2
)
, x ∈ Rd.

In particular, when κ = 0, ∇0 = ∇ and ∆0 = ∆.

8 / 29



Typical example 1

Example (rank-one case)

Let d = 1. Then R = {−
√

2,
√

2}, G = {e, r} with e(x) = x and
r(x) = −x for every x ∈ R. Given λ ∈ R+, the Dunkl operator is

Df (x) = f ′(x) + λ
f (x)− f (−x)

x
, x ∈ R, f ∈ C1(R),

and the Dunkl Laplacian is

D2f (x) = f ′′(x) +
λ

x2

[
f (−x)− f (x) + 2xf ′(x)

]
, x ∈ R, f ∈ C2(R).
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Typical example 2

Example (radial Dunkl process)

Let W = {x ∈ Rd : 〈α, x〉 > 0, α ∈ R+} and let W be its closure.
The radial Dunkl process is defined as the W-valued Markov process
with infinitesimal generator

∆W
κ f (x) =

1
2

∆f (x) +
∑
α∈R+

κα
〈α,∇f (x)〉
〈α, x〉

,

where f ∈ C2(W) such that 〈α,∇f (x)〉 = 0 whenever 〈α, x〉 = 0. It is
known that the corresponding SDE, i.e.,

dYt = dBt +
∑
α∈R+

κα
dt
〈α,Yt〉

, Y0 = y ∈ W,

has a unique strong solution for all t ≥ 0 (see e.g. O. Chybiryakov
[SPA 2006], B. Schapira [PTRF 2007]).
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A remark on Dunkl process

(
∆κ,D(∆κ)

)
⇐⇒ Dunkl process (Xt)t≥0

∀ I ⊂ R+, let

UI = {α ∈ R+ : 〈α, x〉 = 0, x ∈ ∩α∈Iα
⊥}.

(Xt)t≥0 is a càdlàg Markov process of jump type with jumping kernel

K(x, dy) =


∑
α∈R+

2κα

〈α,x〉2 δrαx(dy), x ∈ Rd \ (∪α∈R+
α⊥),∑

α∈R+\UI

2κα

〈α,x〉2 δrαx(dy), x ∈ ∩α∈Iα
⊥,

0, x = 0,

where I is any subset of R+, δ· denotes the Dirac measure.

M. Rösler and M. Voit [Adv. App. Math. 1998], L. Gallardo and M. Yor [PTRF

2005] & [AOP 2006], B. Schapira [PTRF 2007], etc.
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Weight function

Let
ωκ(x) :=

∏
α∈R+

|〈α, x〉|κα , x ∈ Rd,

which is a homogeneous function of degree

λκ :=
∑
α∈R+

κα.

Let
µκ(dx) := ωκ(x)dx,

where dx denotes the Lebesgue measure on Rd.
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Dunkl heat semigroup/kernel

Let (Pt)t>0 be the Dunkl semigroup with Pt = et∆κ for every t > 0.
Then Pt admits the Dunkl heat kernel pt(x, y) w.r.t. µκ, which is a C∞

function of all variables x, y ∈ Rd and t > 0, and satisfies that

∂tpt(x, y) = ∆κpt(·, y)(x), pt(x, y) = pt(y, x) > 0,
∫
Rd

pt(x, y) dµκ(y) = 1;

moreover,

pt(x, y) ≤ 1
cκ(2t)d/2+λκ

exp
(
− δ(x, y)2

4t

)
, x, y ∈ Rd, t > 0,

where cκ :=
∫
Rd e−|x|

2/2 µκ(dx) and δ(x, y) := ming∈G |gx− y|.
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Li–Yau inequalities for Dunkl heat equation

Theorem (L.–Qian 2021)

Let T ∈ (0,∞] and β : (0,T)× Rd → R be a function. Suppose that
u : [0,T)×R→ (0,∞) is any C2 solution to the Dunkl heat equation

∂tu(t, x) = ∆κ

(
u(t, ·)

)
(x), (t, x) ∈ (0,T)× Rd.

Then

−∆κ

(
log pt(·, y)

)
(x) ≤ β(t, x), (t, x, y) ∈ (0,T)× Rd × Rd, (1)

is equivalent to

−∆κ

(
log u(t, ·)

)
(x) ≤ β(t, x), (t, x) ∈ (0,T)× Rd; (2)

moreover, either (1) or (2) implies

|∇u(t, ·)(x)|2

u(t, x)2 − ∂tu(t, x)

u(t, x)
≤ β(t, x), (t, x) ∈ (0,T)× Rd.
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Remarks

The idea of proof is motivated by C. Yu and F. Zhao [JGA, 2020],
where sharp Li–Yau inequalities for the Laplace–Beltrami operator on
hyperbolic spaces were obtained.

Recently, similar idea was employed by F. Weber and R. Zacher in
[arXiv:2012.12974] to prove Li–Yau inequalities for the fractional
Laplacian (−∆)s with s ∈ (0, 1).
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Sharp Li–Yau inequalities for Dunkl heat kernel

Theorem (L.–Qian 2021)

Suppose that G is isomorphic to Zd
2 = {0, 1}d. Then

−∆κ

(
log pt(·, y)

)
(x) ≤ d + 2λκ

2t
, x, y ∈ Rd, t > 0.

If κ = 0, then ∆κ = ∆, λκ = 0, and (pt)t>0 is the heat kernel
associated to ∆ on Rd, i.e.,

pt(x, y) =
1

(4πt)d/2 exp
(
− |x− y|2

4t

)
, x, y ∈ Rd, t > 0;

hence
−∆

(
log pt(·, y)

)
(x) =

d
2t
, x, y ∈ Rd, t > 0.

20 / 29



Dunkl heat kernel: Zd
2 case

Let Γ(·) be the Gamma function. For every t > 0, u, v ∈ R and each
i = 1, · · · , d, let

pi
t(u, v) =

1
cκi(2t)κi+1/2 exp

(
− u2 + v2

4t

)
Eκi

( u√
2t
,

v√
2t

)
,

where cκi := Γ(κi + 1/2) and

Eκi(u, v) :=
Γ(κi + 1/2)

Γ(1/2)Γ(κi)

∫ 1

−1
(1− s)κi−1(1 + s)κiesuv ds.

Then, for every t > 0 and every x, y ∈ Rd with x = (x1, · · · , xd) and
y = (y1, · · · , yd),

pt(x, y) =

d∏
i=1

pi
t(xi, yi).
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Sketched proofs (I)

Let t > 0 and x, y ∈ Rd with x = (x1, · · · , xd), y = (y1, · · · , yd). Then

∆κ

(
log pt(·, y)

)
(x)

=

d∑
j=1

(κj

x2
j

[
2xj∂xj log pj

t(xj, yj)− log pj
t(xj, yj) + log pj

t(−xj, yj)
]

+∂2
xjxj

log pj
t(xj, yj)

)
.

Hence, it suffices to estimate the terms in the parentheses, i.e.,

κj

x2
j

[
2xj∂xj log pj

t(xj, yj)−log pj
t(xj, yj)+log pj

t(−xj, yj)
]
+∂2

xjxj
log pj

t(xj, yj),

and it reduces to the rank-one case.
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Sketched proofs (II)

Ignoring the subscript j, for every t > 0 and x, y ∈ R, we let

I := ∂2
xx log pt(x, y) +

κ

x2

[
2x∂x log pt(x, y)− log pt(x, y) + log pt(−x, y)

]
,

where

pt(x, y) =
1

cκ(2t)κ+1/2 exp
(
− x2 + y2

4t

)
Eκ
( x√

2t
,

y√
2t

)
,

Eκ
( x√

2t
,

y√
2t

)
= Cκ

∫ 1

−1
(1− s)κ−1(1 + s)κe

sxy
2t ds.

Then we only need to estimate

I1 := ∂2
xx log pt(x, y),

I2 :=
κ

x2

[
2x∂x log pt(x, y)− log pt(x, y) + log pt(−x, y)

]
.
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Sketched proofs (III)

Let g(s) = (1− s)κ−1(1 + s)κ and a = xy/(2t).

By the Cauchy–Schwarz inequality,

I1 =− 1
2t

+
y2

4t2

(∫ 1
−1 s2g(s)eas ds∫ 1
−1 g(s)eas ds

−
( ∫ 1
−1 sg(s)eas ds

)2( ∫ 1
−1 g(s)eas ds

)2

)

≥− 1
2t
.

I2 =
κ

x2

[
−x2

t
+ 2a

∫ 1
−1 sg(s)eas ds∫ 1
−1 g(s)eas ds

+ log

∫ 1
−1 g(s)e−as ds∫ 1
−1 g(s)eas ds

]
≥−κ

t
.

Thus, I = I1 + I2 ≥ −(1 + 2κ)/(2t).
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Harnack inequalities

An immediate consequence of the Li–Yau inequality is the Harnack
inequality.

Corollary (L.–Qian 2021)

Let T ∈ (0,∞]. Suppose that G is isomorphic to Zd
2 and u : [0,T)×R

→ (0,∞) is a C2 solution to the Dunkl heat equation, i.e.,

∂tu(t, x) = ∆κ

(
u(t, ·)

)
(x), (t, x) ∈ (0,T)× Rd.

Then, for every 0 < s < t < T and every x, y ∈ Rd,

u(s, x) ≤ u(t, y)
( t

s

)λκ+d/2
exp

( |x− y|2

4(t − s)

)
.

25 / 29



Outline

1 Introduction

2 Li–Yau inequalities for Dunkl heat equation

3 Sharp Li–Yau inequalities for Dunkl heat kernel: Zd
2 case

4 Problem

26 / 29



Outline

1 Introduction

2 Li–Yau inequalities for Dunkl heat equation

3 Sharp Li–Yau inequalities for Dunkl heat kernel: Zd
2 case

4 Problem

27 / 29



Li–Yau inequalities of “gradient” type

Let f , g ∈ C2(Rd) and x ∈ Rd. Then

Γ(f , g)(x) :=
1
2
[
∆κ(fg)− f ∆kg− g∆κf

]
(x)

= 〈∇f (x),∇g(x)〉+
∑
α∈R+

κα

(
f (x)− f (rαx)

)(
g(x)− g(rαx)

)
〈α, x〉2

.

Set Γ(f ) = Γ(f , f ) for convenience.

Q: Does any of the following hold, i.e.,

Γ
(
pt(·, y)

)
(x)

pt(x, y)2 − ∂tpt(x, y)

pt(x, y)
≤ d + 2λκ

2t

and
|∇κpt(·, y)(x)|2

pt(x, y)2 − ∂tpt(x, y)

pt(x, y)
≤ d + 2λκ

2t
?
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" Thank you everyone! "
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